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Abstract- In this study the static analysis of a single stage hydraulic cylinder is considered. A complete 
theoretical model is developed that allows the consideration of all the factors that affect the statics of a 
hydraulic cylinder in its action as a compression member. The scheme is based on the classical Euler-
Bernoulli beam theory, and makes detailed account of all the loadings present, and of the various types of 
boundary conditions. 
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I. INTRODUCTION 

Hydraulic cylinders are compression members consistingof parts having different rigidity. In the simplest 
casethere are two parts (Fig. 1), but in more complicated cases,such as telescopic cylinders, there are several 
parts [1],[2], [3]. Anumber of different combinations of support conditions atthe ends are encountered in these 
problems. In the simplestcase there are pinned supports at both ends, while in othercases the supports may be 
pinned-fixed, doubly-fixed, orfixed-free. In exceptional conditions, hydraulic cylindersoperate solely in the 
vertical condition, but morecommonly they operate in an inclined position or in acompletely horizontal position. 
In these latter positions theself-weight of the cylinder and the hydraulic fluid oftenprovide a transverse load that 
increases the eccentricity ofaxial loads. Further factors requiring consideration are thesliding joint between the 
rod and cylinder, and thelooseness in the joints, implying elasticity in theconnections or supports. The 
components forming thehydraulic cylinder have step-variations in their stiffness,and thus the equation governing 
the deflection isdiscontinuous over the domain, which complicates theanalysis. 

In the technical literature a number of approaches for theanalysis of compression members have been presented 
[4[, [5], [6], [7], but none has completely addressed the full details thatare encountered with practical hydraulic 
cylinders. Articles and thestudy of the various catalogs provided by suppliers ofhydraulic cylinders indicate that 
some details related tohydraulic cylinders are not taken into consideration, andthat approximate approaches of 
analysis are applied, whichmay in cases lead to non-conservative results [8], [9], [10]. The industry produces a 
variety of hydraulic cylinderproducts, and generally carries out complete designs for itsproducts. Nevertheless, 
there is no available methodology,appropriate for comprehensive analysis of hydrauliccylinders, which accounts 
for both transverse and axialloads. Thus a comprehensive scheme of calculation isrequired which considers 
completely the various loadingand support conditions that may arise, and whichultimately leads to a safe 
product having economicaldimensions. 

A. Stability analysis of compression members. 

The classical method of stability analysis of a compressionmember is described by Timoshenko [11]. Other 
methodsexist which offer a more detailed consideration of theproblem [12], [13], [14]. These methods include 
the classical Euler-Bernoullimethod based on an approximate differentialequation for the elastic bending of a 
beam, methods basedon semi-empirical formulas, the method of the -coefficient for the reduction of the 
admissible stress, energymethods, the method of the parameters of the origin, themethod of the integration of the 
differential equation, thefinite element method, the secant formula for the case ofcolumns with eccentric load, 
and the method of limit loadsfor the case of the loss of stability due to simultaneouslongitudinal and transverse 
bending. Most of thesemethods cover only compression members having constantrigidity, and thus cannot be 
applied directly to hydrauliccylinders. It has been shown that the method of parametersof the origin to determine 
the critical load, whilepermitting the analysis of structures with variable rigidity,is excessively complicated in 
solution if all the factorsaffecting the problem are to be considered [15]. 
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B. Static analysis of hydraulic cylinders. 

With the development of computer-aided methods, and theavailability of new mathematical approaches, 
attemptshave been made to overcome difficulties posed byequations governing domains containing step-
variations inproperties [16],[17]. The model proposed by [15] considered the cylinder as a beam with step 
variationsin rigidity, subjected to perfect loading (no eccentricities),and lacking of initial curvature. In this 
approach thepossible influence of a loose fit in the joints is notconsidered, nor the effect of self-weight in the 
case whenthe cylinder adopts a position at an angle to the vertical. 

In paper [18] analyzed the influence of the extension length on loads distribution through sliding contacts along 
the boom. In another work [19], a method is used which permitsdetermination of stability characteristics for 
cylinder of anynumber of stages. The results obtained in that work aresuperior to results obtained in other 
works. A deficiency inprevious methods stems from the fact that the self-weightof the cylinder is not 
considered, despite the fact that it hasa substantial influence on the deformation of the rod in anarticulated 
system. The influence is due to the bendingcaused by the self-weight, and to the moment causing asagging equal 
only to the deformation produced by theloose fit of the sliding joint in each stage. In other work[20] the bending 
is determined without considering that therod is subjected to a combination of transverse andlongitudinal 
flexure. In further studies empirical methodshave also been presented to determine the stability ofhydraulic 
cylinders, and the finite element method hasbeen used, in which the cylinder is modeled as a columnwith a 
cross-section that varies in the longitudinaldirection. 

II. THEORY. 

C. Modeling of the system  

In the scheme of analysis presented in this study thefollowing factors are taken into account, which 
generallyhave not been considered in previous studies: 

• Loose fit existing between the piston – body androd – and the axle box. 

• Self–weight of the cylinder and the hydraulicfluid. 

• Moment caused by the friction in pinned joints. 

• A general treatment of the supports: fixed,pinned, elastic, etc. 

• Positioning of a support along the length of thecylinder. 

• Inclination of the cylinder. 

• Eccentricity of the axial load at either end. 

• Variation in the slope produced by the elasticity ofthe axle box and seals. 

• The details of the construction of the rod: solid orhollow, with or without internal pressure. 

D. Scheme of the analysis. 

The scheme of analysis proposed for a cylinder of singlestage is shown in Figs. 1a and 1b.  

Where: 

WCULATA, LCULATA – weight and length of the cylinder head. 

WLH, LCP – weight of the hydraulic fluid and length of fluidcolumn from the head to the front face of the piston. 

WC, LC – weight and length of the cylindrical tube. 

Wv, Lv – weight and length of the rod. 

Wcp, Wbg, Wtu – weight of the head of the piston, theguiding axle and the bolts of the attachment. 

WOREJA, LOREJA – weight and length of the ring connection. 

Lp – distance from the head to the intermediate support. 

It is considered that the two components of the model, CAand CB (Fig. 1b), have a rigidity equal to that of 
acylindrical tube (sleeve) R1 and that of a rod, respectively R2. Thecomponents are subject to a uniformly 
distributed loadingequal to the combined sum of the various components andthe hydraulic fluid, divided by the 
length. The transitionpoint C is the point where the axis of the cylindrical tubeand the axis of the rod intersect, 
when the system deformsdue to the action of applied loads. The weight W of thesliding connection between the 
cylindrical body and therod is considered as a load concentrated at the transitionpoint C, as indicated in Fig. 1b. 
The weights of the axlebox and the piston head are included in the concentratedload W acting at the transition 
point C.  
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III. EQUATIONS FOR THE CALCULATION SCHEME. 

For an arbitrary section of the tube part, for example the section 1-1 of Fig. 5, the flexural moment that produces 
the curvature is obtained by taking the product of the flexural rigidity with the second derivative of the 
displacement for this part, namely: 

ଵܯ ൌ െܧଵ ∙ ଵܫ
݀ଶ ∙ ଵݕ
ଶݖ݀

 
(1)

The flexural moment in this section produced by theexternal loads and the reactions is: 
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Where: 

y1 – displacement at a distance z in the cylinder,measuredwith respect to the left support. 

For equilibrium the internal and external moments must beequal. Thus combining equations (1) and (2) one 
obtains. 
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Where: 
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An analysis is next carried for the rod part of thestructural member (section 2–2, Fig. 5), for which one obtains: 
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The differential equations (3) and (4) describe thebehavior of the displacements in the tube and the rod parts of a 
hydraulic cylinder carrying an axial load.The boundary conditions, and the continuity conditions to be satisfied 
in solving these equations are: 
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The solution for equations (3) and (4) are obtainedas:  
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Where C1, C2, D1, and D2are constants to bedetermined from the conditions (5).  

Application of the equations (5) leads to the following values for the constants C1 and C2. 
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With the application of the continuity conditions at the sliding joint, i.e. at z=lc and substituting the values of C1 
and C2from equations (10) and (11) one obtains therelation. 
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The equations for the slope are obtained as the first derivative of the displacements (6) and (7) as:  
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Enforcing the continuity conditions at the slidingjoint, and substituting the values of C1 and C2 from equations 
(10) y (11), one obtains: 
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Solving simultaneously the equation (12) and (16) one obtains:  
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ܲ

൨ ൤
ଶܭ

sinሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ
൨ 

െ
ଷܶܭଶ

sinሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ
൅ ൤ߚ ൅

ܹ

ܲ
൨

1

sin ሺܭଵܫ௖ሻ
ൠ 

(16)

 

ଶܦ ൌ
1

ܳ
൜൤
௖ߚ௖ܭ
ܲ

൅ ଵܶ൨ ൤
ሻܮଶܭሺ ݏ݋ଵܿܭ

sinሺܭଵܫ௖ሻ ௩ሻܫଶܭሺ݊݅ݏ
൨ െ ൤ ଶܶ ൅

௩ߚ௩ܭ
ܲ

൨ ቈ
௖ሻܫଶܭሺ݃݊ܽݐ௖ሻܫଵܭሺ݃݊ܽݐଶܭ ൅ ଵܭ

tanሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ
቉ 

(17)

െ
ଷܶܭଵ cosሺܭଶܮሻ

tanሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ
െ ൤ߚ ൅

ܹ

ܲ
൨ ൤
cos ሺܭଶܮሻ

sin ሺܭଶܫ௩ሻ
൨ൠ 

Where: 

ܳ ൌ
ଵܭ

tan ሺܭଵܫ௖ሻ
൅

ଶܭ
tan ሺܭଶܫ௩ሻ

 
(18)

The values of the constants C1, C2, D1 and D2 in the displacement equations (6) and (7) and the equations for the 
slope (14) and (15) are obtained from the relations (10), (11), (17) y (18), respectively.  

The slope β is evaluated using a procedure proposed by the authors. The other two unknown values, βc y 
βvwhich appear in the equations of displacement and slope and in the equations to determine C1, C2, D1 and 
D2are found by enforcing the following conditions of compatibility. 

ܼ ൌ 0 
ଵݕ݀
ݖ݀

ൌ  ௖ߚ

And  
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ܼ ൌ ݈ 
ଶݕ݀
ݖ݀

ൌ  ௩ߚ

On combining the equations (10), (11), (14), (15),(17),(18), and (20) one obtains two relations which have 
theform: 

ூூܣ௖ߚ ൅ ଵଶܣ௩ߚ ൌ ଵ (19)ܤ

And  

ଶூܣ௖ߚ ൅ ଶଶܣ௩ߚ ൌ ଶ (20)ܤ

Where: 

ூூܣ ൌ 1 െ
௖ܭ
ܲ

ଶܭଵሺܭ െ ଵܭ tanሺܭଵܫ௖ሻ tanሺܭଶܫ௩ሻሻ

ଵܭ tanሺܭଶܫ௩ሻ ൅ ଶܭ tanሺܭଵܫ௖ሻ
൅
௖ܭ
ܮܲ

 
(21)

ூଶܣ ൌ
ଶܭଵܭ௩ܭ

ଵܭܲ tanሺܭଶܫ௩ሻ ൅ ଶܭ tanሺܭଵܫ௖ሻ cosሺܭଶܫ௩ሻ cos ሺܭଵܫ௖ሻ
െ
௩ܭ
ܮܲ

 
(22)

ଵܤ ൌ
ଵܭ
ܳ
ቊ ଵܶ ቈ

ሾܭଶ െ ଵܭ tanሺܭଵܫ௖ሻ tan ሺܭଶܫ௩ሻሿ

tanሺܭଵܫ௖ሻ tan ሺܭଶܫ௩ሻ
቉ െ

ଶܶܭଶ
sinሺܭଵܫ௖ሻ tanሺܭଶܫ௩ሻ

െ
ଷܶܭଶ

sinሺܭଵܫ௖ሻ tanሺܭଶܫ௩ሻ
 

 

 

൅൬ߚ ൅
ܹ

ܲ
൰

1

sinሺܭ௜ܫ௖ሻ
െ
ሺ݁௩ െ ݁௖ሻ

ܮ
൅
ሺ ௩݂ െ ௖݂ሻ

ܮ
െ
ܴ௖
ܲ
ൠ 

(23)

ଶଵܣ ൌ െ
௖ܭ
ܲ
ቈ

ሾܭଵܭଶሿ

ሾܭଵ tanሺܭଶܫ௩ሻ ൅ ଶܭ tanሺܭଵܫ௖ሻሿ
቉

1

cosሺܭଵܫ௖ሻ cosሺܭଶܫ௩ሻ
൅
௖ܭ
ܮܲ

 (24)

ଶଶܣ ൌ ቈ1 ൅
ଶܭ௩ሾܭ tanሺܭଵܫ௖ሻ tanሺܭଶܫ௖ሻ ൅ ଵሿܭ

ܲሾܭଵ tanሺܭଶܫ௩ሻ ൅ ଶܭ tanሺܭଵܫ௖ሻሿ
቉ ∙

ଶcosܭ ሺܭଶܫ௖ሻ

cosሺܭଶܫ௩ሻ cos ሺܭଶܮሻ
െ
ଶܭ௩ܭ sinሺܭଶܮሻ

ܲ cosሺܭଶܮሻ
െ
௩ܭ
ܮܲ

 (25)

ଶܤ ൌ
ଶܭ
ܳ
൜൤

ଵܶܭଵ
sinሺܭଵܫ௖ሻ sin ሺܭଶܫ௩ሻ

൨ െ ଶܶ ቈ
ሺܭଶ tanሺܭଵܫ௖ሻ ൅ tanሺܭଶܫ௖ሻሻ ൅ ଵܭ cosሺܭଶܫ௖ሻ

tanሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ cosሺܭଶܮሻ
቉ 

െ
ଷܶܭଵ

tanሺܭଵܫ௖ሻ sinሺܭଶܫ௩ሻ
െ ൬ߚ ൅

ܹ

ܲ
൰

1

sinሺܭଶܫ௩ሻ
൅ ଶܶܭଶtan ሺܭଶܮሻ െ

ሺ݁௩ െ ݁௖ሻ

ܮ
൅
ሺ ௩݂ െ ௖݂ሻ

ܮ
െ
ܴ௩
ܲ
ൠ 

(26)

Solving simultaneously the equations (21) y (22) oneobtains: 

௖ߚ ൌ
ଶଶܣଵܤ െ ଶܤଵଶܣ
ଶଶܣଵଵܣ െ ଶଵܣଵଶܣ

 

And 

௖ߚ ൌ
ଵଵܣଶܤ െ ଵܤଶଵܣ
ଶଶܣଵଵܣ െ ଶଵܣଵଶܣ

 

With the equations (10), (11), (17), (18), (29), and (30) one can determine the unknowns C1, C2, D1, D2c, and  

vrespectively, in the equations of the displacement (6) and (7), and in the equations for the slope (14) and (15). 

The equation for the flexural moment for the tube part of the body is found using equations (12), and similarly 
the flexural moment in the rod part of the body is found using the equation: 

ଶܯ ൌ െ
ܲሺ݁௩ െ ݁௖ሻ

ܮ
ሺܮ െ ሻݖ ൅

ܲሺ ௩݂ െ ௖݂ሻ

ܮ
ሺܮ െ ሻݖ െ

ሾ݇௖ߚ௖ െ ݇௩ߚ௩ሿ

ܮ
ሺܮ െ ሻݖ ൅ ܴ௩ሺܮ െ ሻݖ െ ܲ ௩݂ െ  ௩ߚ௩ܭ

െ
ଶܹ

2
ሺܮ െ ሻଶݖ ൅ ܲሺ݁௩ ൅  ଶሻݕ

(27)

IV. CONCLUSIONS. 

An approach has been presented for the static analysis of a hydraulic cylinder of a single stage. The approach is 
comprehensive, and permits consideration of a number of factors, which have not been accounted for in 
previous studies. 

The equations obtained allow to improve the design of the hydraulic cylinders providing economical designs 
with appropriate safety factors. 
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