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ABSTRACT 

In the paper an analysis scheme able to considerate of all the main geometric and load factors that affect the 

behavior of a hydraulic cylinder in its action as a flexural-compression member. Also, experimental validations of the 

model are shown too. A methodology to identify the conditions leading to the instability of the cylinder is established. 
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1. INTRODUCTION 

Hydraulic cylinders are compression members 

consisting of parts having different rigidity. In the simplest 

case there are two parts Figure-1, but in more complicated 

cases, such as telescopic cylinders, there are several parts 

[1], [2], [3]. A number of different combinations of 

support conditions at the ends are encountered for these 

members. In the simplest case there are pinned supports at 

both ends, while in other cases the supports may be 

pinned-fixed, doubly-fixed, or fixed-free. In exceptional 

conditions, hydraulic cylinders operate solely in the 

vertical condition, but more commonly they operate in an 

inclined position or in a completely horizontal position. In 

the latter position the self-weight of the cylinder and the 

hydraulic fluid often provide a transverse load that 

increases the eccentricity of axial loads. Further factors 

requiring consideration are the sliding joint between the 

rod and cylinder, and the looseness in the joints, implying 

elasticity in the connections or supports. The components 

forming the hydraulic cylinder have step-variations in their 

stiffness, and thus the equation governing the deflection is 

discontinuous over the domain, which complicates the 

analysis. 

In the technical literature a number of approaches 

for the analysis of compression member have been 

presented [4]-[9], but none has completely addressed the 

full details that are encountered with practical hydraulic 

cylinders. Industrial manufacturers produce a variety of 

hydraulic cylinder products, and generally carry out 

complete designs for their products. Nevertheless, there is 

no available methodology, appropriate for a 

comprehensive analysis of hydraulic cylinders, which 

accounts for both transverse and axial loads. Thus a 

comprehensive scheme of calculation is presented herein, 

which addresses completely the various loading and 

support conditions that may arise, and which ultimately 

leads to a safe product having economical dimensions. 

The classical method of stability analysis of a 

compression member is described by Timoshenko [10]; 

other methods exist which offer a more detailed 

consideration of the problem. Most of the methods cover 

only compression members having constant rigidity, and 

thus cannot be applied directly to hydraulic cylinders. 

With the development of computer-aided 

methods and the availability of new mathematical 

approaches, attempts have been made to overcome 

difficulties posed by equations governing domains 

containing step-variations in properties [11]. The model 

proposed by [12] considered the cylinder as a beam with 

step variations in rigidity, subjected to perfect loading (no 

eccentricities), and lacking of initial curvature. In this 

approach the possible influence of a loose fit in the joints 

is not considered, nor the effect of self-weight in the case 

when the cylinder adopts a position at an angle to the 

vertical. 

In another works [13],[14] a method is used 

which permits determination of stability characteristics for 

cylinder of any number of stages. The results obtained in 

that works are superior to results obtained in other works. 

A deficiency in previous methods stems from the fact that 

the self-weight of the cylinder is not considered, despite 

the fact that it has a substantial influence on the 

deformation of the rod in an articulated system. The 

influence is due to the bending caused by the self-weight, 

and to the sagging moment produced by the loose fit of the 

sliding joint in each stage. In a recent works [15], [16], the 

finite element method has been used, and empirical results 

have also been presented to predict the stability of 

hydraulic cylinders. 
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 𝑃ሺ݁௩ − ݁௖ሻܮ  − 𝑃ሺ݁௩ − ݁௖ሻܮ  − 𝑃ሺ ௩݂ − ௖݂ሻ𝑟ܮ  

𝑃ሺ ௩݂ − ௖݂ሻ𝑟ܮ ௖𝛽௖ܭ  − ܮ௩𝛽௩ሻܭ  − ௖𝛽௖ܭ − ܮ௩𝛽௩ሻܭ ܮ𝑝ܯ   − ܮ𝑝ܯ  ͳܮ ቞𝑊ଵ𝐼௖ (𝐼௩ + 𝐼௖ʹ) + 𝑊ଶ𝐼௩ଶʹ ቟ − ͳL ቞WଵIc (Iv + Icʹ) + WଶIvଶʹ ቟ 𝑊𝐼௩ܮ  
𝑊𝐼௖ܮ  

 

Figure-1. Hydraulic cylinder - geometry, reactions 

and loads. 

 

2. METHODOLOGY 

 

2.1 Calculation scheme 

A single stage hydraulic cylinder may be 

modelled as a compression member consisting of a tube 

(part left of C in Figure-1 and solid rod (part right of C in 

Figure-1). An eccentric axial load P acts on the member. 

As well, transverse loads arise due to gravity effects on the 

components and fluid (Figure-1). Following the 

calculation scheme presented in detail in the first article of 

this study (Gomez et al. [16]), the equation for the flexural 

moment in the tube is given by: 

ଵܯ  = 𝑃ሺ௘𝑣−௘𝑐ሻ௅ ݖ − 𝑃ሺ௙𝑣−௙𝑐ሻ௅ ݖ + ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ௅ + 𝑅௖ݖ − 𝑝ܯ −𝑃 ∙ ௖݂ − ݇௖ ∙ 𝛽௖ − ௪భଶ ଶݖ + 𝑃ሺ݁௖ +  ଵ)                              (1)ݕ

 

Where: 

y1- Is the deflection of the axis of the tube at the axial 

distance z from the origin. 

L- Is the length. 

k- Factors are rotational stiffnesses, the e factors are 

eccentricities. 

W1- is a transverse load effect. 

 

Similarly the equation for the moment in the rod 

is given by: 

 

Mଶ = − Pሺୣv−ୣcሻL ሺL − zሻ + Pሺ୤v−୤cሻL ሺL − zሻ −[kcβc−kvβv]L ሺL − zሻ + RvሺL − zሻ − Pfv − Kvβv −Wʹʹ ሺL − zሻʹ + P(ev + yʹ)                                                         (2) 

 

Where: 

y2- Is the deflection of the axis of the rod at the axial 

distance z from the origin.  

 

The governing equations for the displacement in 

the Euler-Bernoulli theory of beams in the tube and rod 

become 

Where: 

 ௗమ௬భௗ௭మ + ݇ଵଶݕଵ = ݇ଵଶ ቒ− ሺ௘𝑣−௘𝑐ሻ௅ ݖ + ሺ௙𝑣−௙𝑐ሻ௅ ݖ − ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ𝑃௅ ݖ −𝑅𝑐𝑃 ݖ + ெ𝑝𝑃 + ௖݂ + ௞𝑐𝛽𝑐௅ − ݁௖ + ௪భଶ𝑃  ଶቓ                                 (3)ݖ

 ௗమ௬మௗ௭మ + ݇ଶଶݕଶ = ݇ଶଶ ቒ− ሺ௘𝑣−௘𝑐ሻ௅ ሺܮ − ሻݖ + ሺ௙𝑣−௙𝑐ሻ௅ ሺܮ − ሻݖ −ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ𝑃௅ ሺܮ − − ሻݖ 𝑅𝑣𝑃 ሺܮ − ሻݖ + ݒ݂ + 𝑃ݒ𝛽ݒ݇ − ݒ݁ 𝑃ʹʹݓ+ ሺܮ −  ሻʹ]                                                                      (4)ݖ

 

Where: 

ଵଶܭ  = 𝑃ܧଵ𝐼ଵ ଶଶܭ = 𝑃ܧଶ𝐼ଶ 

 

The solutions to the equations for the deflections 

are: 

ଵݕ  = ଵܥ cosሺܭଵ ∙ ሻݖ + ଵܦ sinሺܭଵ ∙ ሻݖ − ሺ௘𝑣−௘𝑐ሻ௅ ݖ +ሺ௙𝑣−௙𝑐ሻ௅ ݖ − ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ𝑃௅ ݖ − 𝑅𝑐𝑃 ݖ + 𝑇ଵ + ௞𝑐𝛽𝑐𝑃 + ௪భଶ𝑃 ଶሺͲݖ ݖ≥ ≤ ݈௖)                                                                              (5) 

 

And 

 yଶ = Cଶ cosሺKଶ ∙ zሻ + Dଶ sinሺKଶ ∙ zሻ − ሺev − ecሻL ሺL − zሻ+ ሺfv − fcሻL ሺL − zሻ  − ሺkcβc − kvβvሻPL ሺL− zሻ  − RvP ሺL − zሻ  + Tଶ + kvβvP+ wଶʹP ሺL − zሻଶ ሺ݈௖ ≤ ݖ ≤  (6)                                                                      ܮ

 

The moments for T1 and T2 and given by: 

 𝑇ଵ = ெ𝑝𝑃 + ௖݂ − ݁௖ − 𝑊భ𝑃௄భమ                                                  (7) 𝑇ଶ = ௩݂ − ݁௩ − 𝑊మ𝑃௄మమ                                                           (8) 

 

The inclinations of the elastic curve in the tube 

and rod are: 
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ௗ௬భௗ௭ = ଵܭଵܥ− sinሺܭଵ ∙ ሻݖ + ଵܭଵcos ሺܭଵܦ ∙ ሻݖ  − ሺ௘𝑣−௘𝑐ሻ௅ +ሺ௙𝑣−௙𝑐ሻ௅ − ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ𝑃௅ − 𝑅𝑐𝑃 + ௪భଶ𝑃 ሺͲ (9)                                       ݖ ≤ ݖ ≤ ݈௖ሻ 

 

and ௗ௬మௗ௭ = ଶܭଶܥ− sinሺܭଶ ∙ ሻݖ + ଶܭଶܦ cosሺܭଶ ∙ ሻݖ − ሺ௘𝑣−௘𝑐ሻ௅ +ሺ௙𝑣−௙𝑐ሻ௅ − ሺ௞𝑐𝛽𝑐−௞𝑣𝛽𝑣ሻ𝑃௅ + 𝑅𝑣𝑃 − ௪మଶ𝑃 ሺܮ − ሻሺ݈௖ݖ ≤ ݖ ≤  (10)      (ܮ

 

With the application of the conditions of 

compatibility and of the satisfying of the various equations 

cited in the preceding it is possible to determine the 

various coefficients inherent in the flexural, slope and 

moment equations. Full details are provided by Gomez et 

al.[16]. Evaluation of the mechanical quantities can then 

be made at any point in either part of the cylinder. 

To provide experimental validation for the 

theoretical model a hydraulic cylinder was fabricated and 

tested Figure-2. The properties were as follows: tube 

diameter = 100 mm; rod diameter = 40 mm; maximum rod 

extension = 200 mm; working pressure = 12 MPa; test 

pressure = 18 MPa; axial force = 96 kN; applied force = 

79 kN. 

The seals used in the cylinder permit a radial 

tolerance up to 2 mm. In view of the nominal dimensions 

and the upper and lower limits for the tolerances of these 

components, the maximum and minimum diametral 

tolerances between the body and the piston are 

respectively 2.22 and 0.55 mm. The experimental work 

was carried out with the cylinder in a horizontal position, 

with a hinged - hinged installation, and completely 

extended. Measurements were carried out for three values 

of pressure; 12, 18, and 22 MPa. Three sets of samples 

were taken at each pressure level, and the average taken. 

The results are presented in Table-1. 

 

 
 

Figure-2. Experimental apparatus for cylinder test. 

 

In the validation of the model, it was assumed 

that there was no eccentricity in the axial load. The effect 

of self-weight of the cylinder and hydraulic fluid were 

considered. Following recommendations given in the 

literature three values were assumed for the initial angle of 

inclination β; 0, 0.05, and 0.1. In Table-1 the average 

difference between the experimental and theoretical values 

is 9.21%. 

Several factors were not considered in the 

validation that could have reduced the size of the average 

difference. With the assumption of ideal conditions, β = 0, 
i.e. zero initial slope, the average error was 10.6%. On the 

other hand for assumptions of initial angle of inclination of 

β = 0.05, 0.01, the average differences were 9.8% and 
7.3%. 

 

Table-1. Comparison of theoretical and experimental 

displacements (P is the assumed angle of initial slope). 
 

Pressure = 12MPa 

 Distance from support to measurement (mm) 

 115 215 300 395 505 

β=0 20.6 62.0 81.1 83.8 35.5 

β =0.05 21.2 63.3 84.5 90.8 30.0 

β =0.1 24.0 64.1 87.0 79.0 28.5 

Expt. 23.5 67.5 86.0 72.5 36.0 

 

Pressure = 18 MPa 

 Distance from support to measurement (mm) 

 115 215 300 395 505 

β =0 34.1 83.6 92.1 82.0 39.2 

β =0.05 45.2 85.2 93.7 76.0 49.7 

β =0.1 36.5 85.9 94.2 79.0 53.9 

Expt. 40.7 89.0 101 85.0 50.3 

 

Pressure = 22 MPa 

 Distance from support to measurement (mm) 

 115 215 300 395 505 

β =0 59.1 101.9 130 109 69.0 

β =0.05 68.5 106 139 111 65.0 

β =0.1 63.7 118 125 112 75.0 

Expt. 71.0 111 130 117 70.8 

 

2.2. Initiation of loss of stability 

Using the expression (2) for the flexural moment 

in the rod, one can pose the condition for the initiation of 

loss of stability of the hydraulic cylinder. This condition is 

characterized by the appearance of plastic deformations at 

the positions of maximum normal stress at the critical 

section of the rod, which are at the extreme fibres. The 

stresses there are then given by: 

 𝜎௠𝑎௫௩ = 𝜎௠𝑎௫௖௩ + 𝜎௠𝑎௫௙௩ = 𝜎௙                                         (11) 

 

Where  

σmaxcv = compressive stress in the rod due to the axial 

force P. 

σmaxfv = flexural stress in rod due to flexural load. 
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There is a deviation from the condition that the 

limit in compression is equal to the limit in tension for the 

materials used for the rod, and the loss of stability in the 

hydraulic cylinder occurs in the rod part. 

The maximum stress in the rod (for the case of a 

massive rod) can be calculated using the expression: 

 𝜎௠𝑎௫௩ = 𝑃𝐴 + ெ𝑓೘𝑎𝑥𝑣𝑊𝑥 = 𝜎௙                                              (12) 

 

Where A= πdv
2
/4 (cross-sectional area of rod). 

Wx = = πdv
3
/32 (flexural modulus of the rod).  

 

Then the maximum stress becomes: 

 𝜎௠𝑎௫௩ = ସ∙𝑃𝜋∙ௗ𝑣మ + ଷଶ∙ெ𝑓೘𝑎𝑥𝑣𝜋∙ௗ𝑣య = 𝜎௙                                      (13) 

 

Where 

dv = cross-sectional diameter of the rod,  

P = axial load on the cylinder. 

σf = plastic flow stress for the rod material. 

 

Evaluating the expression (13) one can find the 

value of the axial load P at which the plastic deformations 

begin in the rod, and thus one can find the load for 

instability initiation. 

 

3. RESULTS AND DISCUSSIONS 
The fact that plastic deformations commence in 

the rod does not signify at all a complete loss of stability 

in the hydraulic cylinder. The normal stresses due to 

flexure are distributed in the transverse section of the rod, 

in a manner proportional to the the distance from the 

neutral axis, and the start of the plastic deformations 

signifies solely that the maximum stresses in the section 

reach, locally, the capacity of the material Figure-3 a. 

From this loading level onward, owing to the 

increase of the flexural moment, the plastic stresses 

expand within the section, proceeding from the extreme 

fibres towards the neutral axis Figure-3b. There is 

complete loss of stability when the plastic stresses reach 

completely across the cross-section Figure-3c. 

Subsequently, the deformations of the rod continue to 

increase without increase in load. 

When the critical load is reached a plastic hinge 

is formed at the critical cross-section, which can carry 

only a flexural moment equal to the flexural capacity of 

the cross-section. This moment capacity is given by: 

௟𝑖௠ܯ  = 𝜎௙ ∙ 𝑊𝑝௟                                                             (14) 

 

Where Mlim is the plastic moment capacity of the 

section.   For a circular section one has: 

 𝑊𝑝𝑖 = ͳ.͹ ∙ 𝑊௫ = ଵ.଻∙𝑖∙ௗ𝑣యଷଶ = Ͳ.ͳ͸͹ ∙ ݀௩ଷ                          (15) 

 

At the complete loss of stability the stress is 

given by 

 𝜎௠𝑎௫ = 𝑃𝐴 + ெ𝑓೘𝑎𝑥𝑣𝑊𝑃೗                                                         (16) 

 

From this expression is obtained: 

 𝜎௠𝑎௫ = ସ∙𝑃𝜋∙ௗ𝑣మ + ଺∙ெ𝑓೘𝑎𝑥𝑣ௗ𝑣య                                                   (17) 

 

This latter expression is used to obtain the value 

of the axial load P at which there is complete loss of 

stability. 

In the proposed method of analysis an initial trial 

axial load P is considered to be applied to the hydraulic 

cylinder, and the equation of the deflected curve is 

determined. The slopes and the flexural moment in this 

solution are determined, and the analysis is continued up 

to the determination of the condition for the initial, and 

then the complete loss of stability. 

If the condition (17) is not satisfied by the given 

load P, an increase P is made to the load, and the entire 

analysis is repeated at this higher load level. The process is 

continued until the failure state is reached. 

In the stability calculations, it is often assumed 

that the hydraulic cylinder acts as a column axially loaded, 

with a diameter equal to the diameter of the rod, and with 

a length (Lc) equal to the total length of a hydraulic 

cylinder in the most extended condition Figure-4a. 

Alternatively, it may be assumed that the hydraulic 

cylinder acts as a column, fixed at one end, and hinged at 

the other Figure-4b. The diameter is taken equal to the 

diameter of the rod, and the length equal to the length of 

the completely extended rod (Lc/2). In some industries the 

first scheme is used in the calculations, verifying the 

rigidity of the hydraulic cylinder at the design stage. 
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Figure-3. Growth of plastic zone in rod cross-section. 

 

 
 

Figure-4. Idealization of columns; top: hinged - hinged, bottom: fixed - hinged. 

 

For a cylinder with a total length Lc = 2000 mm, 

and a diameter dv = 25 mm, with the hinged - hinged 

idealization of Figure-4a, one obtains a critical load using 

the classical Euler formula as: 

 𝑃௖𝑟í𝑡 = 𝜋మ∙𝐸∙𝐼೘í೙௅మ = ͻ͸͵,ͺʹ ݂݇݃                                     (18) 

 

Using the fixed - hinge idealization of Figure 4b 

the value of the critical load is 

 

Pcrit = 5782.97 kgf 

 

Using the expression (17) and the other equations 

of the method for the displacements and moments, the 

critical load at the initiation of the loss of equilibrium, 
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assuming a rod material with σf = 3600 kgf/cm
2
, isPcrit= 

1947 kgf From the preceding analysis it is concluded that 

the values for the limit forces, recommended by the 

industrial manufacturers, are below the limit values 

obtained by the proposed method. The actual value of the 

supported load by this cylinder is about 1.5 times (i.e. 

above) the value presently recommended. On the other 

hand, those industrial manufacturers that use, in the 

determination of the critical load the fixed-hinged scheme, 

propose values equal to double those obtained by the 

method proposed in the current study. Thus, for those 

cylinders the loss of total stability will occur at a value far 

below the value of the limit load presently recommended. 

 

4. CONCLUSIONS 

A proposal for a new scheme for the evaluation 

of the stability condition for a single stage hydraulic 

cylinder has been presented. The proposed scheme is more 

comprehensive than those currently in use. Experimental 

results obtained demonstrate the validity of the proposed 

approach, with theoretical and experimental results 

differing by an average value less than 10%. 
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